WTF?? Ce o mai fi si asta ? Ei bine se pare ca cercetătorii europeni au reușit sa teleporteze pe o distanta de 12 km un "Quantum Memory" , adică informație ... Sincer e destul de greu de înțeles pentru ca tine de fizica cuantica dar ce e demn de reținut este următoarea parte :
"One of the main requirements for widespread teleportation is entangled photons with a wavelength compatible with telecom fiber. That’s not so easy to produce since the entangled photons must be compatible with the discrete energy jumps in the quantum memory. “This wavelength is typically far away from the low-loss region of standard optical fiber,” say Bussières and co.
So the trick these guys have perfected is to generate entangled pairs of photons with different wavelengths. The first has a wavelength of 883nm (near-infrared), which is compatible with a type of quantum memory made of neodymium-doped yttrium orthosilicate crystals. The second has a wavelength of 1338nm (mid infrared), which passes easily through telecoms optical fiber.
The quantum state to be teleported is the polarization of a 1338nm photon. So these guys send the 883nm signal to the quantum memory where it is stored while transmitting the 1338 signal through a 12 km fiber to another apparatus that prepares a third photon (also at 1338 nm) with the polarization to be teleported.
This is when the teleportation takes place. When these two 1338nm photons are made to interact in a certain way, the polarization is teleported to the quantum memory at the other end of the experiment."
Tocmai s-a semnat certificatul de nastere al unui nou tip de internet - "Quantum Internet". Sa fie într-un ceas bun! :) E extraordinar cat de repede evoluează știința și tehnica ...
Articolul complet îl găsiți aici.
"One of the main requirements for widespread teleportation is entangled photons with a wavelength compatible with telecom fiber. That’s not so easy to produce since the entangled photons must be compatible with the discrete energy jumps in the quantum memory. “This wavelength is typically far away from the low-loss region of standard optical fiber,” say Bussières and co.
So the trick these guys have perfected is to generate entangled pairs of photons with different wavelengths. The first has a wavelength of 883nm (near-infrared), which is compatible with a type of quantum memory made of neodymium-doped yttrium orthosilicate crystals. The second has a wavelength of 1338nm (mid infrared), which passes easily through telecoms optical fiber.
The quantum state to be teleported is the polarization of a 1338nm photon. So these guys send the 883nm signal to the quantum memory where it is stored while transmitting the 1338 signal through a 12 km fiber to another apparatus that prepares a third photon (also at 1338 nm) with the polarization to be teleported.
This is when the teleportation takes place. When these two 1338nm photons are made to interact in a certain way, the polarization is teleported to the quantum memory at the other end of the experiment."
Tocmai s-a semnat certificatul de nastere al unui nou tip de internet - "Quantum Internet". Sa fie într-un ceas bun! :) E extraordinar cat de repede evoluează știința și tehnica ...
Articolul complet îl găsiți aici.